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Vertex operator realization and representations of hyperbolic 
Kac-Moody algebraay) 

V Marottat: and A Sciarrino 
Dipanimento di Sdenze Fisiche, Univemili di Napoli ‘Federico I]’, Napoli, Italy and 
TNFN, Sezione di Napoli, Napoli, Italy 

Received 15 July 1992, in hnal form 12 November 1992 

AbstrscL m e  main fealures of a hyperbolic Kac-Moody algebra (denoted by .d\’)), 
which appean in the dimensional reduction of N = I supergravity from four to one 
dimensions, are presented. A vena construction b exhibiled and the structure of the 
fundamental representations is discussed. ”he vertex operator realization is presenled in 
full generality, i.e. for any indefinite Kac-Moody algebras. 

1. Introduction 

In recent years the theory of (aliine) Kac-Moody [l] algebras (WAS) has attracted 
considerable attention from both the mathematical and physical points of view and it 
has now become a standard subject in modern Lie algebra textbooks (see, e.g., [2]). 
However little is known about infinite-dimensional WAS defined by an indefinite 
Cartan matrix besides those in Kac’s book 131, to which we will refer throughout this 
paper. 

From time to time this type of Lie algebra has appeared in physics literature, 
mainly in the context of string theories. The possible relevance of infinite Lie algebras 
in the context of (super)gravity theories was pointed out by Julia [4] several years 
ago. Recently Nicolai [5] has shown that an hyperbolic extension of SL(2, R) appears 
in the dimensional reduction of ( N  = 1) supergravity from four to one dimension. 

This particular hyperbolic algebra, which we shall denote A‘,’’ and will discuss 
here, has already been considered in some detail by Feingold and Frenkel [6]. 

The aim of this paper is to present a vertex construction of the hyperbolic algebra, 
along the lines of the covariant vertex construction suggested by Goddard and Olive 
[7l, and to discuss several features of the fundamental representations. 

The paper is organized as follow. In section 2 we recall a few properties of 
hyperbolic KMAS and give the Cartan matrix, the Dynkin diagram and the structure 
of the roots of Ai1). In section 3 we present the vertex construction of the algebra 
and in section 4 we discuss some properties of the fundamental representation. At 
the end we present some conclusions and we point out some of the many, as yet, 
unsolved problems. 
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1162 V Marotta and A Sciarrino 

We mainly focus our attention on the particular case of algebra ay), but we try 
to keep our presentation as general as possible in order to exhibit features which are 
common to aU Lorentzian mm, which will be discussed in more detail elsewhere [SI. 

2. The hyperbolic KMA A:' 
Let us recall a few definitions which we need to define a KMA [3,2]. 

satisfies the following conditions: 
A ( d  x d )  matrix A = [ a i j ]  is called a generalized Cartan matrix (GCM) if it 

(i) ai j  E 2; 

(iv) a . .  = 0 implies a j ;  = 0. 
A matrix A is described as indecomposable if it cannot be reduced to a block 

diagonal form by shuffling rows and columns and symmetrizable if the matrix DA is 
symmetric, D being an invertible diagonal matrix. 

We associate with a GCM a Dynkin diagram (DD), denoted sometimes S ( A ) ,  with 
the following properties: 

(a) S( A) has d vertices; 
@) if a i j a j i  = n < 4, the vertices i and j are joined by Inij[ 2 [ a j i l  lines; 
(c) if [aijI 2 [a j ; l  (laijI < [ a j i [ ) ,  we put on the tines (ij) an arrow pointing, 

respectively, towards the vertex j (i); 
(d) if n > 4 the vertices i and j are connected by a boldfaced line on which 

an ordered pair of integers, laijl and lajil, is written. This case will appear only 
for d = 2 for hyperbolic (Hyp) KMAS (defined later). Note that sometimes in the 
literature when condition @) is satisfied the vertices are joined by n lines. Clearly A 
is indecomposable if and only if the corresponding S ( A )  is a connected diagram. 

We associate with a given GCM A a complex Lie algebra defined by 3d generators, 
E; ,  Fi and H i  which satisfy the following commutation and Serre relations 

(U) aii = 2; 
(iii) a i j  < 0 ( {  # j ) ;  

11 

[Ei,F;.] = a i j H ;  (1) 

[ H i , H j ]  = o  (2) 

[ H ; , E j ]  = aijEj (3) 

[ H .  I ,  F j ]  = -a i j  Fj (4) 

(adEi)'-'Lsj E .  I = ( u d F i ) l - a L j q  = 0 (5) ( i  # j ) .  

The algebra can be written in the following form (triangular decomposition) 

G ( A )  = N -  @ H @ N+ 

where H is the Cartan subalgebra and N - ( N + )  are, respectively, the linear span of 
F,(Ei). 

We can have three cases: 
(i) det A > 0 corresponding to finite W; 
(ii) det A = 0, with rank of A equal to d - 1 and determinant of any leading 

principal submatrix positive, corresponding to Atf WAS; and 
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(iu) det A < 0 corresponding to indefinite KMAS. 
The hyperbolic KMAS are a particular case of the indefinite Khbu with the further 

condition that every leading submatrix decomposes into constituents of finite and/or 
affine type or, in an equivalent way, by deleting a vertex of the corresponding S( A)  
one obtains DD of finite or affine ICMAS. 

We can make the following distinctions 191: 
strictly hyperbolic (SHyp) if every leading principal submatrix decomposes into 

purely hyperbolic (PHyp) if every leading principal submatrix decomposes into 

hyperfinite (HypF) if at least one leading principal submatrix decomposes into 

hyperaffine (HypA) if at least one leading principal submatrix is of affine type. 
A symmetrizable GCM A and the corresponding KMA is said to be Lorentzian if 

Clearly SHyp and PHyp are Hyp and every Hyp matrix is either HypF or HypA 

One can show [10,9]: 

constituents of finite type; 

constituents of affine type; 

constituents of finite type; 

the matrix A has signature (d -1,l). 

or both. 

Theorem 1. All the GCM of type Hyp (Shyp, Phyp, HypF and HypA) are Lorentzian. 

A classification of hyperbolic algebras has been made in [ l l ,12]  generalizing 
previous results obtained in [3]. In [ l l ]  all the DDs have been drawn, resulting in 238 
DDS (of rank 2 3) of which 85 are SHyp and 142 DDS correspond to symmetric or 
symmetrizable GCM. The highest rank of the Hyp algebras is 10 and E,, belongs to 
this class which has appeared several time in the context of string theories. 

For Hyp algebras corresponding to symmetrizable GCM, a set of simple roots (SR) 
ai can be introduced in such way that the matrix A determines a symmetric bilinear 
form (., .) in the root space (H’) defined by 

a . .  :I =(a. 1 5  a.) a = ai ,aj. (6) 

An affine KMA can be obtained by adding to the lattice r of roots of a finite Lie 
algebra G (horizontal algebra) a light-like vector ICt: 

( K + , I C + )  = 0 (K+,a;) = 0. (7) 

The affine root is obtained by adding Kt to the lowest root of C: (affinization 

A class of HypA is obtained by adding to the lattice of roots of affine KMA another 
procedure). 

light-like root IC- such that 

( K - , a i ) = ( I C - , I C - ) = O  ( K - , I i + ) =  1. (8) 

Double-affinization is called the procedure of adding to an Aff KMA an SR 
containing IC- such that this new root has a scalar product equal to -1 with the 
affine root and zero with the other SRS. 

A classification of double-affinized I<MAS has been obtained by Ogg [13]. In the 
original paper the procedure was called superaffinization but we prefer to change the 
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name to double-affinization to avoid confusion with the procedure of affinization of 
superalgebras. 

Let us remark that in the case of Aff MAS K+ is a root (not simple), while in 
the case of Hyp KMAS K -  is not always a root. 

The symmetric GCM defining the 

V Maroffa and A Scinnino 

algebra is [6,3] 

A =  -2 2 -1 (1 I: :) 
and the corresponding S ( A )  is 

The simple roots are, denoting by a the root of A,, (ai, a i )  = 2 

a1 = a 
a2 = -a + K+ 
cy3 = -K+ - K -  

(9) 

The algebra is defined by equations (1) to (3, where E, (F , )  ( i  = 1,2,3) 
corresponds, respectively, to ai(-..:) and aCj is given in terms of the SR by 
equation (6). We recall that a graded Lie algebra G = @I:~G~, generated by 
Go @ GI @ G-l, simple (i.e. not containing non-trivial homogeneous ideals) is said 
to be of finite growth 1141 if the dimension of the space G; grows as a p w e r  of lil. 
From Kac's theorem in [14] we see that the algebra A?) is not of finite growth. 

Clearly it is both HypF and HypA; in fact, deleting the vertex corresponding to 
the SR a,, a,, a3 one finds the subalgebras A,, A, + A,, AY), respectively. 

The set of roots T (A = { r ) )  [6] is given by r = E:=, ki ai where the triple of 
integers is constrained by 

(ki t ki + ki) - 2k,k,-  kzk3 < 1. (10) 

In the following we will specify a root by a triple of integers [klr k,,  51, denoting 
its length by a superscript on the triple and we will use the following notation: 

A+ = = [k i ,k , , i c , ]k j  E z+) (11) 

(12) A L = { r = [ k 1 , k 2 , k 3 ]  L r . r = L ,  ,5622, k,;Z}.  

In particular we have 

A: = { [ ? c d m  t k3 t R ,  IC3 + n , k3] n , -, k3 E 2, , k3 # 0) 
(13) 

(14) A: = I [ * f i +  k3 + n, IC3 t R ,  k31 R ,  6, k3 E Z+, k3 # 0)  

A-,' + - - { [ & e t  k3 + n,k3 + n,k3] 12 0, e , n , k 3  E Zt}. (15) 
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It is useful to have a formula for computing the triple of (finite) numbers 
[k,, k2, k3] as a function of the height (h t )  ( h t  = k, + kz + k3)  and of the length 
(L) of the roots. 

We have 

(16) 
4ht - 5k3 Jk3(8ht - Zk,) f BL 

E z,. 8 
k, = 

The expression in the square root is positive if 

k3 E [ X ,  9 x-I (17) 

X ,  = (4ht f A)/= A = 44-. 

A > 0 implies that roots exist if 

ht < m. 
So for any fixed ht the set of roots can be obtained by the following algorithm 
(i) Consider L E 2, with L >, -2htl23. 
(ii) Compute the corresponding X ,  and then the allowed values of k3 E 2,. 
(iii) For any integer value of k3 compute k, and verify it is an integer. 

(a) the only roots of type [k,, k2,0] are (ht = k, f k,) 
We remark that 

[ht  - n,n,O]* 
[ h t / 2 ,  ht/2,OIu ht E 22, 

n = ( h t f  1)/2 E Z,; 

@) the only roots of type [0, kz, k3] are (all of length = 2) 

[0,1,01 [0,0,11 [0,1,11 

(c) there are no roots of the type [k , ,O,  k3]; 
(d) the roots of negative length always have k, f 0. 
The roots of low height (h t )  are 

ht = 1 {[1,0,0]2;[0,1,0]2;[0,0,1]2} 
ht = 2  {[l,l,O]';[O,l,l]z} 

ht = 3 { [ 2 ,  1,0]'; [l, 2,0]'; [l, 2, l]'} 
ht = 4 {[2,2,0]'; [ 2 .  1,1]'; [1,2, l]"} 
ht = 5 {[3,2,0]*; [2,3,0]2;[2,2, 1]-'; [1,2,2]*] 

ht = 6 {[3,3,0]u;[3,2,1]';[2,2,2]u;[2,3, 1]-'}. 

Note that the first negative length mot appears at ht = 5. The multiplicity 
(m(r)) of roots does not only depend on length, as remarked in [6, IO] and it a n  be 
computed by means of Peterson's recurrent formula [3]. 
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Let G ( A )  be a KMA with symmetrizable GCM; set 

c, = n-"(r/n) 
R * l  

where P belongs to rf (r+ = q a i ,  : ni E Z+), p is the 'unit' root 

(p,ri)  = 1 Vi < d. (21) 

For A'," the unit root is p = [-9/2, -5, -21. Then the recurrent formula, which is 
proven in 191, reads 

( T , T - 2 p ) C v  = (+,T")C+C+,. 
r'+r'J=r 

Finally we recall several definitions and properties of the Weyl group for w, 
which wc shall use in section 4. 

We recall [3] that the Weyl g o u p  (W) of a KMA is a discrete group of isometries 
of the dual of the Canan subalgebra generated by the reflections with respect to the 
SRS (fundamental reflections). The elements of W which are obtained as a product 
of an even number of fundamental reflections form a normal subgroup WO of 
called either a conformal Weyl group or an even subgroup. Clearly, for Hyp KMAS, 
WO E SOf(d - 1, l) ,  while W E O+(d  - 1,l). 

In the cue of A\" the Weyl group is generated by the three fundamental 
reflections whose action on the SRs is given by 

w a. (a.) 1 = a. 3 --n..ai. 1 )  (23) 

This group is discussed in detail in (61. It can be identified with the extended 
modular group (F'Gb(Z)) while WO is isomorphic to the modular goup (PS&(Z)). 
We remind ourselves that a root T is called real if there exists an element w E W 
such that w ( r )  is an SR. Let us recall several important properties of the Weyl group: 

(i) the bilinear form (.,.), the sets A and A" are invariant under the action of 
w 

(ii) the dimension of a space of a root is equal to the dimension of the space of 
the reflected mt; 

(iii) contrary to what happens in the case of finite Lie algehras, fixed pints may 
exist in the root space of a KMA, e.g. the root al + a2 = Kt E Ail) is fixed for 
reflections with respect to al and a2 In fact Kt is orthogonal to both al and a2. 
It is easy to show that there are no fixed points for Ai'). 

Considering the set of roots 

R, = { T  E A? : ( T ,  ai)  0 V i }  (24) 

we can obtain all the other imaginary roots, in fact 

A? = UwEWw(R+). 
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In the case of a? the loots r E R, must satisfy the conditions 

(25) 
2ht - 3k3 ht - k3 13 

> k i > -  Vhl 2 y k 3 ,  k3, k ,  E Z+ 3 2 
ht - k3 13 

V-k3 > ht  > 5k3, k,, k ,  E Zt .  (26) h l + > k , > -  3 2 2 

A complete classifcation of roots in R, can be given in terms of the set 
t h t ,  L, k31: 

(i) for k* = 0, r = [h t /2 ,  ht/2,01“ Vht E 22; . .  . .  
(ii) for ht = 5k3, T = [2k3,2k3;  i 3 ] - Z k 3 ;  

(iii) for ht = 6k,  t n, T = [k, ,ht  - k, - k,, k,]‘ with (9k, t 2n)/4 < k ,  < 
A computer-calculated table of multiplicities of roots of low ht ,  belonging to R,, 

The roots which are not real are called imaginary. Clearly 

(5k, t n ) / 2  k, E Z and L = k: + 
for a\’), is reported in 131, p 149. 

+ (h t  - k ,  - k3)(hi  - 3k, - Zk,). 

A = A = U A ~  (27) 

and we have 

A” = { T E  A :  (r,r) = 2) 

Ah = { r  E A : ( T-, r) < 0). 

3. Vertex operator construction 

The well known vertex construction of an Aff KMA can be generalized to the case of 
Ind KMAS along the lines of the covariant construction of Goddard and Olive [7]. 

Let us introduce d Fubini-Veneziano fields (p = 1, .  . . , d )  

where 

[ q P , p y ]  = igFv sign(g) = (-, t, t,. . ’, t ) 
P V  ff; = P [ 4 , a k l  = n6,tm,ug 

(31) 

(32) 

These fields are defined on a ddim Minkowskian torus and satisfy periodical 

Let us define 
boundary conditions on the mots lattice r. 

( i~(~) = : &v,Q(z) : (33) 

where : : denotes normal ordered product and 

id‘ 
n! dz” 

r .  Q ( n ) ( z )  = - r .  Q ( z ) .  (34) 
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U'(Z) are the vertex operators (vo) which are introduced for the vertex 
realization of an AlT KMA. It is possible to introduce a generalized VO (GVO) (see 
(15,161) by means of the following ordered product 

: PI . Q ( n l ) ( t ) r 2 .  Q'"') . . . rN Q("" ) ( z )Ur ( r )  : (35) 

where Ti  E r and ni E 2,. It is convenient to express a GVO in a different basis [I? 
introducing a set of Schur polynomials, which are defined by the following formal 
expansion 

where c, are commuting variables. So we have 

The new basis will be formed by fields which are represented as Schur polynomials 
in the fields r .  Q(' ) (z)  (1 < I < n): 

This equation has to be read as a Schur polynomial, the variable cf being now 
replaced by the field r . Q"). It foUows that a GVO is an ordered product of Schur 
polynomials and standard vo: 

U/;;:j!(t) =:n:Pn,(ri.Q(")(~))LIr(t): 
i 

which can be explicitly written in the following form: 

(39) 

We can make a Laurent expansion of a GVO 

The terms in equation (41) with m = 0 are 
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where the integral is performed along a closed path CO, including the point z = 0. 
With any mot of length L = T' we associate a GVO such that 

+T' + Eni = 1 (43) 

so for L = 2 the corresponding GVO is the standard vo while for L = 0 it is the 
photonic vo [A. 

Let us point out that equation (43) is connected with the conformal symmetly of 
the GVOS, which will be discussed elsewhere [SI, and that not all the sets ( n i ) ,  which 
satisfy equation (43), in fact appear in the construction of the algebra. 

Now we have the following proposition. 

Proposiliofl 1. The product of two GVOS can be written in the following form, for 
IzI > IF1 

From the well hown relation [18] 

U'( z )U"(c )  =: U ' ( z ) U s ( [ )  : ( z  - t ) r ' s  for < [zl  (47) 
it is possible to write the product of two GVOs as an operator product expansion 
(OPE) 

x u ' ( z ) u " J ( ~ , ) u - ~ ~ ( ~ ) u ~ ( ~ ) ]  : (Zi - [ )T+Sj )  ( z  - {j)(-J% 

(48) ( z i  - [j)r.'ej(z - E)r.s-r;.s-r.sjtri.sj. 
By applying the Leibnitz rule for derivation this equation can be written as 



In order for the left-hand side of equation (52) to be a commutator, we have to 

?b compute the right-hand side of equation (52) we have to evaluate the residues 
introduce the cocycles, which have been constructed in [18]. 

at poles of order 

in the OPE. 
From equation (43) for roots r and s it follows that the right-hand side of 

equation (52) has no poles for 
(. + SI2 2 4 (54) 

so we obtain a condition on the length of roots which ensures the absence of poles. 
When equation (54) is satisfied the right-hand side of equation (52) vanishes. 
Let us remark that not all the operators are relevant for the construction of the 

algebra as there is a class of GVOS which vanishes. In fact if Li:;;:;[(z) can be 
written as a total z derivative of a GVO, then A{:CA = 0. This property is also a 
consequence of the conformal symmetry. 

We can summarize the relevant commutation relations in the following formula, 
where suitable coqcles are supposed to have been included, 

Equation (55) can be written, after some calculations using our proposition, 
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where 1 < i <  N ,  1 < j < M ,  ~ ( b )  = - r . s  t C k i  + C k j  - l-CC<*lc and 

Moreover in the A operator the labels have been ordered in such a way that the 
h'th (1 < K 6 6) set of subscript labels denotes the order of derivation of the set of 
vos specified by the ( K  + 1)th set of superscript labels. 

y = - 7 ,  s + C k ;  + CIcj - 1 - C d , " l d .  

In particular X s = -r and si = -ri we get 

From equation (57) we see the Cartan generators Hi are given by ai . p. Note that 
for ni = 0, for ri = 0 and r2 = 2 the x coefficient in the right-hand side iS q u a l  to 
1. 

The x coefficients can he explicitly computed as a combination of factorials 

We end this section with a few relevant remarks: 
(i) no central charge is present in the case of AI'); 
(ii) the 'derivation' D of the Aff subaglebra Ai'): which can be written as 

D = -K- . p and does not belong to A\'), belongs to AY); 
(iii) the complexity of equation (56) may suggest that our choice is not the 

most convenient one. However the right-hand side of this equation can be easily 
implemented in a computer algorithm to perform numerical calculations. 

Let us explicitly write a few relevant commutation relations for the simple roots 

We have ( i  = 1,2,3) 
of A\'). 
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Let us remark that this commutator is not vanishing in spite of the vanishing of 
the scalar product a l .  (a1 + a2) = 0 as the vo corresponding to the root a1 + a, is a 
GVO and then in the commutator a pole of order al .( orl + a2) - 1 = - 1 appears, see 
equation (44). The commutator of AaI with AzarltOz vanishes as al .(2al +a,) = 2 

So we have explicitly shown that the GVO construction is a realization of the 
algebra in the Cartan-Chevalley basis, see equations (1)-(5). 

A Fundamental representations of ay) 
Many of the general properties of the representation theory of semi-simple Lie 
algebras hold for infinite KMAS. We refer to [3,2] for a more detailed account 
and, for completeness, we only recall here a few properties that we need. 

A representation of a KMA is called an integrable highest weight (HW) 
representation if the carrier space V is a direct (in general infinite) sum of finite- 
dimensional weight subspace. The elements of a weight suhspace are eigenvectors 
of the operators @(If;), Hi E H with eigenvalues A(N,) and the dimension of the 
subspace V, is called the multiplicity (m( A)) of weight A. 

There does exist one weight A, HW, with m(A) = 1, which is annihilated by all 
operators @(Ei). For any simple root a; there exist non-negative integers, n and 
n', such that for any @ E V 

@(E;)n@= @(~) " ' c ,+  = 0. (66) 

Any weight can be written as 

The ~w A, such that 

defines an irreducible Hw representation (IR) of a KMA. 

the appendix, 
The m( A )  can be computed by means of the Kac formula [Z], which is proven in 

where ~ ( w )  = (-I)'('") is the parity of the Weyl element w ,  [(w) being the lowest 
possible number of fundamental reflection needed to build UI. m ( A )  is equal to 
m(w(A)) vw E w. 

The fundamental representations are specified by A; such that 
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In the case of ay) we indicate a weight X by the triple of integers (m, , ,  mZ, m3). 

In this case there exist three fundamental representations: 

(72) (i,o,o) 

(0,1,0) A2 = -Kt t I ( -  (73) 

(0,0,1) A , = - K t .  (74) 

CY = - - IC+ + IC- 
?. 

Starting from the ~ w ,  all the vectors of V are obtained by action of the operators 
@ ( E ) ,  as in the case of the simple Lie algebras. In the case of Ai') the action of 
@ ( F ~ )  and @(F,) spans an IR of the affine subalgebra A:'), starting from a HW for 
AI'), while @(F,) and @ ( F 3 )  span an IR of the finite subalgebra A,. The operator 
@ ( F 3 )  connects states belonging to IRs of AI') at different levels, hence acting as a 
level-raising operator. So an IR of ai') looks like an infinite sum of representations 
of an increasing level of A?). 

The three fundamental I R ~ ,  of a?, at the first 'level', reduce, respectively, to the 
level 1 spinorial R, the basic IR and the trivial (one-dimensional) IR of AY). For the 
representations of Ai') see [19, U)]. 

In figures 1, 2 and 3 we report a few states of the first three levels of the 
fundamental IRs of ay). In the figures the eigenvalues of a)( Hi) and the multiplicity 
of the states are shown. 

Let us illustrate with an example the previously described pattern of the structure 
of the I R ~  of ay). We denote by ( ml,  mz),,,, an IR of (Aff) algebra Ai'), where the 
subscript label specifies the eigenvalue of @( H,) which commutes with @ ( E l )  and 
@( F,). In standard notation ml = h, mz = k - h where k is the 'level' and h the 
Hw of an IR of A,. The second level of IR A2 can be Mitten as 

(?.~o)-i@(?.~O)u@(o, ?.)u@(?.~O)i@(o, ~ ) 1 ~ ( ? . , ~ ) ~ @ ? . ( ~ ~ ? . ) 2 ~ ? . ( ? . ~ ~ ) 3 ~ ? . ( ~ ,  ?.),e. . . 

the third level as 

(2,1)-2@(0,3)-z@3(?.,1)-1$2(0,3)-1@6(23 1)~@5(0,3)~@4(2,1) ,@18(0,3)1$. .~  

The fact that IRS of different levels of Atf AI1) appear in the Same IR of the 
algebra A$" suggests that a unified construction of IRS of any level of A? must be 
possible, in particular for the vo representation. This fact is not clear in the so called 
transverse VO realization while it is possible in the so called covariant vo construction 
1211. Clearly this is a general feature for any Aff algebra. 



1174 V Marotta and A Scinnino 

Figure t The first states of the fvst three levels of representalion A I  are reponed. 
A state k denoted by a dot; the broken, full and dotted a r m w  denote the aclions of 
@ ( F t ) ,  e(&) and @(F,), mpectively. ?he triple of inlegers in brackets gives Ihe 
values of m, and the number on the dot gives the mulliplicily of the stale, A few 
spaced dotted ha without arrow are also drawn to identify some representations of 
lhe subalgebra A2 better. 

Figure 2 The first states of the fml three levels of represenlalion A 2  are s h m .  
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Figure 3. The first Stales of the fvst three levels of repraentalion A, are shown 

5. Conclusions 

The vo construction we have presented in section 3 is completely general and it 
applies to Hyp KMAS as well as to Lorentzian algebras. An important aspect, which 
has not been discussed in this paper, is connected with the conformal transformation 
properties of the fields which appear in the vertex operators. The discussion of the 
conformal behaviour of the field requires the construction of the Virasoro algebra 
associated with the KMA, which has been discussed, in full generality, by Borcherds 
in [U]. The conformal structure of the fields in the vo construction is extremely 
relevant for physical applications and it depends on the value of the dimension d. 
Another relevant aspect, which is not completely unrelated to the previous one, is 
the action of the GVOS on the Fock space of the representation. We will discuss 
both these aspects elsewhere [SI. The general structure of an IR for any Hyp KMA 
can be inferred &om our discussion in section 4. However, many unsolved problems 
still remain. For instance, a general proof of the complete reducibility of a HW IR 
in terms of 1x3 of the affine subalgebra and a formula (at least formal) giving the 
decomposition of an IR of a Hyp ~EMA with respect to the affine subalgebra are 
missing. 

Let us also remember that the string functions, which in the case of Aff WAS 
allow the computation of the multiplicity of the weights, are not known for Hyp WAS. 
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Appendix 

We give a proof of equation (69) which allows us to compute the multiplicity of 
weights by induction on the height h f ( A  - A). 

In Kac's book [3] several formulae are given for the formal character (ch) of a 
HW module L(A) .  

Let us start from equation 

V Marotta and A Scianino 

where E (  w) is the parity of the Weyl reflection and e( A)  is a formal exponential: 

e(0) = 1 e ( X ) e ( p )  = e ( X + p ) .  (76) 

Multipling equation (75) by the denominator and by e( -p) ,  using the definition 

and a redefinition of the weight label X of equation (77) 

X --t X - w ( p )  + p. (78) 

Equation (75) can be rewritten as 

x e ( X )  ~ w ) ~ L ( A ) ( X  + P -  4~)) = 4 w ) e ( u , ( A  + P )  - P I .  (79) 
x WEW WEW 

Multipling both sides of equation (79) by e(p )  using the invariance of the 
bilinear invariant form for Weyl transformations and the following properties (see 
proposition 11.4 of [3]) 

I A + p l Z = I X + p 1 2  8 X = A  (80) 

we deduce equation (69) for X f A ,  
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